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Abstract
The Larmor precession of a relativistic neutral spin- 1

2 particle in a uniform
constant magnetic field confined to the region of a one-dimensional rectangular
potential well is investigated. The spin precession serves as a clock to measure
the time spent by a quantum particle dwelling at a potential well. With
the help of a general spin coherent state it is explicitly shown that the spin
precession time is equal to the dwell time in the first-order approximation of
the infinitesimal field limit. The comparison of the time in a potential well with
that in free space shows apparent superluminality.

PACS numbers: 03.65.Xp, 03.65.Ta

The traversal time of a particle through a quantum potential barrier is a long-standing interesting
academic problem. There have been numerous theories about traversal time corresponding to
different criteria. Some theories predict that the tunnelling speed is faster than the velocity
of light in vacuum, whereas others state that it should be subluminal. So there is no clear
consensus on this problem [1–3]. Recently, the experimental reports [4–6] showing apparent
superluminality have attracted considerable attention to this subject.

Li and Wang [7] investigated the phase time of a particle scattered by a potential well
instead of tunnelling through a barrier. The phase time [8], one of the notions of traversal
time, is defined as the sensitivity of the phase of the traversal amplitude to the frequency of
the incident particle. They predicted a nonevanescent propagation, even with negative phase
shifts. Negative phase shifts lead to propagation with negative group velocities, which means
that it appears as if parts of a pulse leave the well before they enter. Because of the analogy of
the Schrödinger and Helmholtz equations, this conjecture was confirmed by the experimental
data of electromagnetic wave propagation in wave guides [9], where the electromagnetic well
was realized by wave guides filled with different dielectrics. It is worth noting that apparent
superluminality is distinguishable from true superluminality [10]. Most experimental papers
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are careful to emphasize their consistency with Maxwell’s equations and do not claim the
observation of a true superluminal effect, but indeed their results illuminate an interesting and
potentially useful effect. As stated in [10], apparent superluminality is extremely general and
to be expected.

Most of investigations are focused on nonrelativistic tunnelling and little work has been
done towards the study of relativistic tunnelling time. The question ‘does the fully relativistic
treatment predict apparent superluminal speeds?’ has motivated us to investigate the tunnelling
time for a particle through a potential barrier in the relativistic regime [11, 12]. We use the spin
precession of a relativistic particle in the constant magnetic field as a clock to measure the time
spent by the particle penetrating a potential barrier and demonstrate apparent superluminality.
The analogous method has been used to investigate the tunnelling time for a nonrelativistic
particle through a potential barrier [13, 14]. The precession time, known as Larmor time
[15–17], an alternative notation of traversal time, is defined as the precession angular change
of the traversal particle divided by the Larmor precession frequency. The relation between the
quantum traversal time and the Larmor precession is fully studied in many papers [17–21].
The previous work [17] defines three different Larmor times corresponding to three
components of an operator. But with the help of the general spin coherent state we identify a
unique Larmor time in the first-order approximation of the infinitesimal field limit and show
that this Larmor time exactly equals the dwell time, a physically more significant notion,
which measures how long the matter wave remains in the potential barrier regardless of
whether the particle is reflected or transmitted [22]. By comparing equation (24) in [11] with
equation (2.20b) in [17], it is obvious that this Larmor time in the nonrelativistic tunnelling
case just corresponds with the Larmor time τy in [17]. If we plot the variance of the Larmor
time with the width of potential barrier from the expressions of equations (24) and (57) in [11],
the independence of the Larmor time from the potential width is also shown, which is just the
Hartman effect [23]. Qualitatively, this character is consistent with the result of [24], in which
Kential et al solve numerically the time-dependent Dirac equation for a quantum wave packet
tunnelling through a potential barrier and obtain that the variance of the effective tunnelling
speed with increasing barrier width becomes linear when the packet width is larger than the
effective width of the barrier.

In [12], in the first-order approximation of the infinitesimal field limit, we present a
general proof that the Larmor time equals the dwell time for a relativistic particle penetrating
an arbitrary shape potential and this equality includes transmission time and reflection time
for a symmetric potential. Therefore, for a symmetric potential, by comparing the Larmor
time with potential with that for the particle to penetrate a uniform constant magnetic field
but without potential, apparent superluminality can be shown. In this paper, we demonstrate
apparent superluminality of a relativistic particle scattering by a rectangular potential well
instead of a barrier.

We consider that a relativistic neutral spin- 1
2 particle with momentum p and mass m in

a general spin coherent state impinges on a rectangular potential well U that extends from
−a/2 to a/2. A weak uniform constant magnetic field B, aligned along the z-direction and
confined within the potential well region, superimposes the well. The Hamiltonian is seen to
be [25]

H = cα1px + βmc2 |x| > a/2
(1)

H = cα1px + β[(mc2 − U) − V �3] |x| < a/2

where V = h̄ωL/2 represents the spin–field interaction and ωL = 2µB/h̄ is the Larmor
frequency. µ and h̄ denote the magnetic moment and Planck’s constant (divided by 2π)
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respectively. β, αi and �i (i = 1, 2, 3) are expressed as

β =
(

1 0
0 −1

)
αi =

(
0 σi

σi 0

)
�i =

(
σi 0
0 σi

)
(2)

where σi are Pauli spin matrices and Si = h̄
2�i is the spin operator.

We construct the wavefunction with the incoming particle wave polarized along an
arbitrary direction satisfying the stationary Dirac–Pauli equation

Hψ = Eψ (3)

that is

ψ1 = 1√
1 + f 2

0




u1

u2

f0u2

f0u1


 e

ik0x

h̄ +




A1

A2

−f0A2

−f0A1


 e− ik0x

h̄ x < −a/2

ψ2 =




B1 e
ik1x

h̄

B2 e
ik2x

h̄

f2B2 e
ik2x

h̄

f1B1 e
ik1x

h̄


 +




C1 e− ik1x

h̄

C2 e− ik2x

h̄

−f2C2 e− ik2x

h̄

−f1C1 e− ik1x

h̄


 − a/2 < x < a/2

ψ3 =




D1

D2

f0D2

f0D1


 e

ik0x

h̄ x > a/2.

(4)

This leads for energies E > U − mc2 to wave propagation with the real momentum

k0 = 1

c

√
E2 − (mc2)2

k1 = 1

c

√
(E + V )2 − (mc2 − U)2

k2 = 1

c

√
(E − V )2 − (mc2 − U)2

(5)

and

f0 = ck0

mc2 + E

f1 = ck1

mc2 − U + E + V

f2 = ck2

mc2 − U + E − V
.

(6)

The incoming wave is assumed to be a normalized spin coherent state which is an
eigenstate of the spin operator σ · n where n = (sin θ cos ϕ, sin θ sin ϕ, cos θ) denotes the
arbitrary unit vector with a polar angle θ and azimuthal angle ϕ. The two components of the
spinor are

u1 = cos
θ

2
e−iϕ/2 u2 = sin

θ

2
eiϕ/2. (7)
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The coefficients Ai, Bi, Ci and Di (i = 1, 2) in the wavefunction are obtained from boundary
conditions ψ1(−a/2) = ψ2(−a/2) and ψ2(a/2) = ψ3(a/2), namely,

Di =
√

Ti eiφi e− iak0
h̄ ui

Ai =
√

Ri e−i π
2 eiφi e− iak0

h̄ ui

Bi = f0 + fi

2fi

e
ia(k0−ki )

2h̄ Di

Ci = −f0 + fi

2fi

e
ia(k0+ki )

2h̄ Di

(8)

where

Ti = 4f 2
0 f 2

i(
1 + f 2

0

)[(
f 2

0 − f 2
i

)2
sin2

(
aki

h̄

)
+ 4f 2

0 f 2
i

]

Ri =
(
f 2

0 − f 2
i

)2
sin2

(
aki

h̄

)
(
1 + f 2

0

)[(
f 2

0 − f 2
i

)2
sin2

(
aki

h̄

)
+ 4f 2

0 f 2
i

]

φi = arctan

(
f 2

0 + f 2
i

2f0fi

tan
aki

h̄

)
.

(9)

For our purpose we consider the first approximation of the infinitesimal field limit,

k1 � k +
E

c2k
V f1 � k

ξ
+

1

cξ

(
E

ck
− k

ξ

)
V

k2 � k − E

c2k
V f2 � k

ξ
− 1

cξ

(
E

ck
− k

ξ

)
V

(10)

where

k = 1

c

√
E2 − (mc2 − U)2 ξ ≡ 1

c
(mc2 − U + E) (11)

is the zero-order approximation. The transmission and reflection probabilities can be expanded
as the power series of the small quantity EV/c2k. The first-order approximation is

T1 = T (k1) � T (k) − ∂T

∂k

E

c2k
V T2 = T (k2) � T (k) +

∂T

∂k

E

c2k
V

R1 = R(k1) � R(k) − ∂R

∂k

E

c2k
V R2 = R(k2) � R(k) +

∂R

∂k

E

c2k
V .

(12)

The expectation values of spin for the transmitted wave are obtained in the infinitesimal field
limit as

〈S1〉t = (
1 + f 2

0

) h̄

2
T (k) sin θ cos(φ2 − φ1 + ϕ)

〈S2〉t = h̄

2

(
1 − f 2

0

)
T (k) sin θ sin(φ2 − φ1 + ϕ)

〈S3〉t = h̄

2

(
1 − f 2

0

) (
T (k) cos θ − ∂T (k)

∂k

E

ck
V

)
.

(13)

The reflected part reads

〈S1〉r = h̄

2

(
1 + f 2

0

)
R(k) sin θ cos(φ2 − φ1 + ϕ)

〈S2〉r = h̄

2

(
1 − f 2

0

)
R(k) sin θ sin(φ2 − φ1 + ϕ)

〈S3〉r = h̄

2

(
1 − f 2

0

) (
R(k) cos θ − ∂R

∂k

E

ck
V

)
.

(14)



Larmor precession and dwell time of a relativistic particle scattered by a rectangular quantum well 6567

The sum of expectation values of spin components for the reflected and transmitted waves
with an infinitesimal magnetic field is

〈S1〉 = h̄

2
sin θ cos(φ2 − φ1 + ϕ)

〈S2〉 = h̄

2

1 − f 2
0

1 + f 2
0

sin θ sin(φ2 − φ1 + ϕ)

〈S3〉 = h̄

2

1 − f 2
0

1 + f 2
0

cos θ

(15)

which are formally the same as the Larmor precession equation of spin operator S in a magnetic
field. To see this we solve the Heisenberg equation

d

dt
S(t) = 1

ih̄
[S(t),Hs] (16)

with the Hamiltonian

Hs = − 1
2 h̄ωLβ�3 (17)

and the initial wavefunction

ψi = 1√
1 + f 2

0




u1

u2

f0u2

f0u1


 . (18)

The expectation values of the spin components at time t are

〈S1(t)〉 = h̄

2
sin θ cos(−ωLt + ϕ)

〈S2(t)〉 = h̄

2

1 − f 2
0

1 + f 2
0

sin θ sin(−ωLt + ϕ)

〈S3(t)〉 = h̄

2

1 − f 2
0

1 + f 2
0

cos θ.

(19)

Comparing equations (15) and (19), the Larmor tunnelling time τL is obviously obtained as

τL = ω−1
L (φ1 − φ2). (20)

Using the approximation (10) in equation (9), the Larmor tunnelling time is found to be

τL = f0

c2k

2akξE
(
k2 + f 2

0 ξ2
) − h̄(ck2 − Eξ)

(
k2 − f 2

0 ξ2
)

sin
(

2ak
h̄

)
4f 2

0 ξ2k2 +
(
k2 − f 2

0 ξ2
)2

sin2
(

ak
h̄

) . (21)

The dependence of Larmor time τL on the well thickness a is shown in figure 1,
where we assume the particle kinetic energy Ep = E − mc2 = 0.5mc2 and U =
0.1mc2, 0.4mc2, 0.8mc2, 1.6mc2 corresponding to the dash-dot, solid, dot and dash lines,
respectively. It is noticeable from equation (5) that if the depth of the potential well U
exceeds the summation of Ep and 2mc2, the wavefunction in the potential well region will be
evanescent, similar to the case of the tunnelling potential barrier [11]. This is completely
different from the nonrelativistic case. The oscillation of Larmor time with respect to
the potential well thickness displayed in figure 1 is related to the periodical occurrence of
transmission resonances at ka/h̄ = nπ (with n a positive integer), at which Larmor time
becomes aE

(
k2 + f 2

0 ξ2
)/

2f0c
2k2ξ . From the wave viewpoint, the oscillation is due to the

quantum phase interference between the incoming wave and the reflected wave from the rear
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Figure 1. The dependence of Larmor time calculated from expression (21) with a potential well on
the well width a, where Ep = 0.5mc2 and U = 0.1mc2, 0.4mc2, 0.8mc2, 1.6mc2 corresponding
to the dash-dot, solid, dot and dash lines, respectively.

edge of the potential well. The condition of constructive interference, which leads to the
maximum probability of the wavefunction in the well and therefore the longest interaction
time, is obviously a = nπh̄/k. With increasing incident particle energy compared with the
depth of the potential well, the influence of the potential well on the particle becomes weak,
so the oscillations disappear and finally the Larmor time is proportional to the well thickness.
The dependence of Larmor time on the thickness in the potential well case is very different
from that in the potential barrier case [24], in which the Hartman effect is shown [14].

It is interesting to compare the Larmor time of a relativistic particle traversing a well with
the Larmor time of a relativistic particle traversing a constant magnetic field B confined in
region −a/2 < x < a/2 , but without a well. With the same procedure as that for the case
with a potential well, the Larmor time of passage through the magnetic field region in the
absence of a well is

τ 0
L = aE

c2k0
(22)

which is exactly the ratio of the travelling distance a to speed v = c
√

1 − (mc2/E)2 . Choosing
U = 0.8mc2 and a = 3h̄/mc, figure 2 shows the dependence of Larmor time τL (solid line) and
τ 0
L (dash line) on the incident particle kinetic energy Ep in units of mc2. It has been displayed

obviously that Larmor time τL with a well is always smaller than Larmor time τ 0
L without a

well. In other words, the speed of a particle in a potential well is greater than that in free
space, which is likely to show apparent superluminality. For the neutron m = 1.67 × 1027 kg,
if we choose a = 5 × 106h̄/mc (about 10 Å), E = 1.5mc2 and U = 0.8mc2, the speed of
the particle through the potential well would be 1.1c. The oscillation of Larmor time with
the potential well is also related to the periodical occurrence of transmission resonances at
ka/h̄ = nπ and due to the quantum phase interference between the incoming wave and the
reflected wave from the rear edge of the potential well. The peaks correspond to the energy
levels of the particle in the potential well, which increase with the depth of the potential well.
With increasing incident particle energy, the influence of the potential well on the particle
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Figure 2. The dependence of Larmor time of expression (21) with a well (solid line) and Larmor
time of expression (22) without a well (dash line) on the incident particle energy, whereU = 0.8mc2

and a = 3h̄/mc.

becomes weak, so the Larmor time with a well asymptotically tends to be the Larmor time
without a well.

The dwell time τd of a particle in a rectangular well is defined as the ratio of the probability
Pb of finding a particle within the well to the incident probability flux [17],

τd = Pb

Ji

. (23)

In Dirac theory, the incident probability flux Ji is

Ji = ψ+
i cα1ψi = 2cf0

1 + f 2
0

. (24)

The probability for the particle to be in the well can be obtained from the determinable
coefficients of equation (8) , which in infinitesimal field limit is

Pb =
∫ a/2

−a/2
ψ+

2 ψ2 dx

= f 2
0

[
2ak(k2 + ξ2)

(
k2 + f 2

0 ξ2
) − h̄(k2 − ξ2)

(
k2 − f 2

0 ξ2
)

sin
(

2ak
h

)]
(
1 + f 2

0

)
k
[
4f 2

0 k2ξ2 +
(
k2 − f 2

0 ξ2
)2

sin2
(

ak
h̄

)] . (25)

The dwell time τd is

τd = f0

2ck

2ak(k2 + ξ2)
(
k2 + f 2

0 ξ2
) − h̄(k2 − ξ2)

(
k2 − f 2

0 ξ2
)

sin
(

2ak
h

)
4f 2

0 k2ξ2 +
(
k2 − f 2

0 ξ2
)2

sin2
(

2dk
h̄

) . (26)

Using the relation

E = cξ2 + ck2

2ξ
(27)
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it is obvious that the dwell time (26) equals exactly the Larmor time (21). So we can utilize
the spin precession of the particle in a uniform constant magnetic field to measure the dwell
time of the particle in a rectangular well exactly.

To summarize, using the spin coherent state of an incoming particle we have shown that
a relativistic neutral spin- 1

2 particle penetrating a rectangular potential well with a uniform
constant magnetic field gives rise to a Larmor precession, from which the dwell time for the
particle to remain in the well is determined . The Larmor time of the particle precession in
a well oscillates with the well thickness and depth and asymptotically tends to the Larmor
time in free space. Similar to the Larmor time of a relativistic particle tunnelling a rectangular
barrier, the Larmor time of a relativistic particle in a well is smaller than that in free space,
which implies apparent superluminality.
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